Journal of Organometallic Chemistry, 168 (1979) C39-C41 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

A CONVENIENT SYNTHETIC ROUTE TO TRIPLE HALIDE BRIDGED ARENE COMPLEXES OF RUTHENIUM(II) AND OSMIUM(II)

T. ARTHUR and T.A. STEPHENSON*

Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Great Britain) (Received December 29th, 1978)

Summary

Protonation with HBF₄ of equimolar mixtures of $[M(arene)X_2(C_5H_5N)]$ and $[M(arene)X(C_5H_5N)_2]PF_6$ in methanol provides a convenient, high yield, synthetic route to the triple halide bridged arene complexes $[M_2(arene)_2X_3]BF_4$ (M = Ru; X = Cl, Br; arene = C_6H_6 , 1,3,5- $C_6H_3Me_3$; M = Os, X = Cl, arene = C_6H_6).

Recently we reported that reaction of $[\{Ru(\eta-C_6H_6)Cl_2\}_2]$ in methanol at ambient temperature with a slight excess of NH₄PF₆ for 24 h gave, in high yield, $[(\eta-C_6H_6)RuCl_3Ru(\eta-C_6H_6)]PF_6$. The most likely mechanism of formation of this cation was proposed to be by intermolecular coupling of the weakly solvated monomers $[Ru(C_6H_6)Cl_2(MeOH)]$ and $[Ru(C_6H_6)Cl(MeOH)_2]^+$. Unfortunately, attempts to prepare other triple halide bridged arene cations by reaction of the appropriate double halide bridged dimers with NH₄PF₆ in methanol were unsuccessful, probably because of the very insoluble nature of these $[\{Ru(arene)X_2\}_2]$ compounds [1].

We now wish to report a more convenient, high yield, synthetic route to these $[M_2(\text{arene})_2X_3]^+$ cations (I). This involves the formation in situ of high equi-

molar concentrations of the solvated monomers $[M(arene)X_2(MeOH)]$ and $[M(arene)X(MeOH)_2]^+$ by protonation in methanol of the corresponding pyridine complexes $[M(arene)X_2(C_5H_5N)]$ and $[M(arene)X(C_5H_5N)_2]PF_6$ respectively.

Thus, for example, treatment of equimolar amounts of $[Ru(C_6H_6)Cl_2(C_5H_5N)]$ [2] and $[Ru(C_6H_6)Cl(C_5H_5N)_2]PF_6$ [1,3] in methanol with a slight excess of HBF₄ gave, after gently refluxing the solution for one hour, an almost quantitative yield of $[Ru_2(C_6H_6)_2Cl_3]BF_4$. Similarly, reaction of $[Ru(C_6H_6)Br_2(C_5H_5N)]$ and $[Ru(C_6H_6)Br(C_5H_5N)_2]PF_6$ [3] with HBF₄ gave $[Ru_2(C_6H_6)_2Br_3]BF_4$ and analogous reactions with the appropriate pyridine monomers gave $[Ru_2(C_6H_3Me_3)_2X_3]BF_4$ (X = Cl, Br).

As observed earlier for the $[Ru_2(C_6H_6)_2Cl_3]^+$ cation [1], all these compounds undergo facile bridge cleavage reactions in solvents such as H₂O and Me₂SO, but fortunately, they are all soluble and stable in CH₃NO₂. Thus, ¹H and ¹³C-{¹H} NMR studies in CD₃NO₂ (Table 1) together with analytical data, conductivity (all 1/1 electrolytes) and far infrared studies (only bridging ν (RuX) present) establish unequivocally the structure of the compounds.

In an attempt to make the mixed bridge compound $[(C_6H_6)RuCl_2BrRu(C_6H_6)]$ -BF₄, equimolar amounts of $[Ru(C_6H_6)Cl_2(C_5H_5N)]$ and $[Ru(C_6H_6)Br(C_5H_5N)_2]$ -PF₆ were treated with HBF₄/MeOH. However, although the product analysed closely for " $[Ru_2(C_6H_6)_2Cl_2Br]BF_4$ ", its ¹H NMR spectrum in CD₃NO₂ showed

TABLE 1

¹H AND ¹³C-{¹H} NMR SPECTRA IN CD₃NO₂ OF SOME RUTHENIUM(II) AND OSMIUM(II) ARENE COMPLEXES

Compound	'H ^a	¹³ C- ¹ H ^a
[Ru ₂ (C ₆ H ₆) ₂ Cl ₃]BF ₄	5.944	82.04
$[Ru_2(C_6H_6)_2Br_3]BF_4$	5.922	82.37
$ \left[\operatorname{Ru}_{2}(C_{6}H_{6})_{2}Cl_{2}\operatorname{Br}]BF_{4}^{\prime\prime} \right] $ $ \left[\operatorname{Ru}_{2}(C_{6}H_{6})_{2}ClBr_{2} \right]BF_{4}^{\prime\prime} \left[\operatorname{Ru}_{2}(C_{6}H_{6})_{2}ClBr_{2} \right]BF_{6}^{\prime\prime} \left[\operatorname{Ru}_{2}(C_{6}H_{6})_{2}CH_{6} \right]BF_{6}^{\prime} \left[\operatorname{Ru}_{2}(C_{6}H_{6})_{2}CH$	5.944,5.937,5.929,5.922	_
$[Os_2(C_6H_6)_2Cl_3]BF_4$	6.64	73.55
[RuOs(C, H,), Cl,]BF	6.46,6.06	82.21.73.82
$[Ru_2(C_6H_3Me_3)_2Cl_3]BF_4$	5.35(H),2.22(Me)	102.01(CMe).75.72(CH).19.42(Me)
$[\operatorname{Ru}_2(\operatorname{C_6H_6})(\operatorname{C_6H_3Me_3})\operatorname{Cl_3}]\operatorname{BF}_4$	5.92,5.37(H),2.20(Me)	102.01(CMe),82.02,75.89(CH),19.28(Me)

^aReference is $(CH_3)_4$ Si; all singlets.

four η -C₆H₆ resonances at 5.944, 5.937, 5.929 and 5.922 ppm of relative intensity 8/12/6/1. The resonance at δ 5.944 ppm arises from [Ru₂(C₆H₆)₂Cl₃]BF₄ and that at δ 5.922 ppm from [Ru₂(C₆H₆)₂Br₃]BF₄. Conversely, reaction of [Ru(C₆H₆)Br₂(C₅H₅N)] and [Ru(C₆H₆)Cl(C₅H₅N)₂]PF₆ (1/1 molar ratio) with HBF₄/MeOH gave a product analysing for "[Ru₂(C₆H₆)₂ClBr₂]BF₄" which showed the same four ¹H NMR η -C₆H₆ resonances but now with relative intensities 1/6/12/8. Thus, these experiments clearly show that statistical mixtures of [Ru₂(C₆H₆)₂Cl₃]⁺, [Ru₂(C₆H₆)₂Cl₂Br₃]⁺ and [Ru₂(C₆H₆)₂Br₃]⁺ cations are formed in these reactions.

It is readily demonstrated that this facile halide exchange can occur prior to protonation since on mixing $[Ru(C_6H_6)Cl_2(PPh_3)]^*$ and $[Ru(C_6H_6)Br(C_5H_5N)_2]^+$ in acetone- d_6 , ¹H NMR studies reveal that some $[Ru(C_6H_6)Br_2(PPh_3)]$ and $[Ru(C_6H_6)Cl(C_5H_5N)_2]^+$ are rapidly formed. However, the ¹H NMR spectrum of a mixture of $[Ru_2(C_6H_6)_2Cl_3]BF_4$ and $[Ru_2(C_6H_6)_2Br_3]BF_4$ in CD_3NO_2 after several minutes at ambient temperature shows four η -C₆H₆ resonances, indicating that facile halide exchange can also occur after formation of the dimers (cf. the formation of some $[PdPtCl_4L_2]$ from reaction of $[Pd_2Cl_4L_2]$ and $[Pt_2Cl_4L_2]$ [4]).

In an attempt to synthesise the tetrameric cation [{ $Ru(C_6H_6)Cl}_4$]⁴⁺ a suspension of [$Ru(C_6H_6)Cl(C_5H_5N)_2$]PF₆ in methanol was treated with HBF₄ but the only product isolated was [$Ru_2(C_6H_6)_2Cl_3$]BF₄ in low yield (ca. 25%). This clearly demonstrates that protonation removes some coordinated chloride as HCl which then reacts to form some [$Ru(C_6H_6)Cl_2MeOH$]. Similarly, protonation of [$Os(C_6H_6)Cl(C_5H_5N)_2$]PF₆ [3] gave [$Os_2(C_6H_6)_2Cl_3$]BF₄ whereas treatment of an equimolar mixture of [$Ru(C_6H_6)Cl_2(C_5H_5N)$] and [$Os(C_6H_6)Cl(C_5H_5N)_2$]PF₆ with HBF₄/MeOH gave a statistical mixture of [$Ru_2(C_6H_6)_2Cl_3$]BF₄, [$Os_2(C_6H_6)_2Cl_3$]BF₄ and [$RuOs(C_6H_6)_2Cl_3$]BF₄. Mixing the pure ruthenium and osmium dimers at ambient temperature in CD₃NO₂ rapidly gave some [$RuOs(C_6H_6)_2Cl_3$]⁺ cation.

Finally, using these methods, the $[(C_6H_6)RuCl_3Ru(C_6H_3Me_3)]^+$ cation can be generated, but not separated, from the $[Ru_2(C_6H_6)_2Cl_3]^+$ and $[Ru_2(C_6H_3Me_3)_2Cl_3]^+$ cations.

Acknowledgement

We thank Johnson—Matthey Ltd. for loans of ruthenium trichloride and sodium hexachloroosmate(IV) and the University of Edinburgh (TA) for financial support.

References

- 1 D.R. Robertson, T.A. Stephenson and T. Arthur, J. Organometal. Chem., 162 (1978) 121.
- 2 M.A. Bennett and A.K. Smith, J. Chem. Soc. Dalton, (1974) 233.
- 3 T. Arthur and T.A. Stephenson, unpublished work.
- 4 A.A. Kiffen, C. Masters and J.P. Visser, J. Chem. Soc. Dalton, (1975) 1311.

*[$Ru(C_6H_6)Cl_2PPh_3$] was used because of the insolubility of [$Ru(C_6H_6)Cl_2(C_5H_5N)$] in acetone.